Unrecoverable Errors with panic!
Sometimes, bad things happen in your code, and there’s nothing you can do about
it. In these cases, Rust has the panic!
macro. When the panic!
macro
executes, your program will print a failure message, unwind and clean up the
stack, and then quit. We’ll commonly invoke a panic when a bug of some kind has
been detected and it’s not clear how to handle the problem at the time we’re
writing our program.
Unwinding the Stack or Aborting in Response to a Panic
By default, when a panic occurs, the program starts unwinding, which means Rust walks back up the stack and cleans up the data from each function it encounters. However, this walking back and cleanup is a lot of work. Rust, therefore, allows you to choose the alternative of immediately aborting, which ends the program without cleaning up. Memory that the program was using will then need to be cleaned up by the operating system. If in your project you need to make the resulting binary as small as possible, you can switch from unwinding to aborting upon a panic by adding
panic = 'abort'
to the appropriate[profile]
sections in your Cargo.toml file. For example, if you want to abort on panic in release mode, add this:[profile.release] panic = 'abort'
Let’s try calling panic!
in a simple program:
Filename: src/main.rs
fn main() { panic!("crash and burn"); }
When you run the program, you’ll see something like this:
$ cargo run
Compiling panic v0.1.0 (file:///projects/panic)
Finished dev [unoptimized + debuginfo] target(s) in 0.25s
Running `target/debug/panic`
thread 'main' panicked at 'crash and burn', src/main.rs:2:5
note: run with `RUST_BACKTRACE=1` environment variable to display a backtrace
The call to panic!
causes the error message contained in the last two lines.
The first line shows our panic message and the place in our source code where
the panic occurred: src/main.rs:2:5 indicates that it’s the second line,
fifth character of our src/main.rs file.
In this case, the line indicated is part of our code, and if we go to that
line, we see the panic!
macro call. In other cases, the panic!
call might
be in code that our code calls, and the filename and line number reported by
the error message will be someone else’s code where the panic!
macro is
called, not the line of our code that eventually led to the panic!
call. We
can use the backtrace of the functions the panic!
call came from to figure
out the part of our code that is causing the problem. We’ll discuss backtraces
in more detail next.
Using a panic!
Backtrace
Let’s look at another example to see what it’s like when a panic!
call comes
from a library because of a bug in our code instead of from our code calling
the macro directly. Listing 9-1 has some code that attempts to access an
index in a vector beyond the range of valid indexes.
Filename: src/main.rs
fn main() { let v = vec![1, 2, 3]; v[99]; }
Here, we’re attempting to access the 100th element of our vector (which is at
index 99 because indexing starts at zero), but the vector has only 3 elements.
In this situation, Rust will panic. Using []
is supposed to return an
element, but if you pass an invalid index, there’s no element that Rust could
return here that would be correct.
In C, attempting to read beyond the end of a data structure is undefined behavior. You might get whatever is at the location in memory that would correspond to that element in the data structure, even though the memory doesn’t belong to that structure. This is called a buffer overread and can lead to security vulnerabilities if an attacker is able to manipulate the index in such a way as to read data they shouldn’t be allowed to that is stored after the data structure.
To protect your program from this sort of vulnerability, if you try to read an element at an index that doesn’t exist, Rust will stop execution and refuse to continue. Let’s try it and see:
$ cargo run
Compiling panic v0.1.0 (file:///projects/panic)
Finished dev [unoptimized + debuginfo] target(s) in 0.27s
Running `target/debug/panic`
thread 'main' panicked at 'index out of bounds: the len is 3 but the index is 99', src/main.rs:4:5
note: run with `RUST_BACKTRACE=1` environment variable to display a backtrace
This error points at line 4 of our main.rs
where we attempt to access index
99. The next note line tells us that we can set the RUST_BACKTRACE
environment variable to get a backtrace of exactly what happened to cause the
error. A backtrace is a list of all the functions that have been called to
get to this point. Backtraces in Rust work as they do in other languages: the
key to reading the backtrace is to start from the top and read until you see
files you wrote. That’s the spot where the problem originated. The lines above
that spot are code that your code has called; the lines below are code that
called your code. These before-and-after lines might include core Rust code,
standard library code, or crates that you’re using. Let’s try getting a
backtrace by setting the RUST_BACKTRACE
environment variable to any value
except 0. Listing 9-2 shows output similar to what you’ll see.
$ RUST_BACKTRACE=1 cargo run
thread 'main' panicked at 'index out of bounds: the len is 3 but the index is 99', src/main.rs:4:5
stack backtrace:
0: rust_begin_unwind
at /rustc/7eac88abb2e57e752f3302f02be5f3ce3d7adfb4/library/std/src/panicking.rs:483
1: core::panicking::panic_fmt
at /rustc/7eac88abb2e57e752f3302f02be5f3ce3d7adfb4/library/core/src/panicking.rs:85
2: core::panicking::panic_bounds_check
at /rustc/7eac88abb2e57e752f3302f02be5f3ce3d7adfb4/library/core/src/panicking.rs:62
3: <usize as core::slice::index::SliceIndex<[T]>>::index
at /rustc/7eac88abb2e57e752f3302f02be5f3ce3d7adfb4/library/core/src/slice/index.rs:255
4: core::slice::index::<impl core::ops::index::Index<I> for [T]>::index
at /rustc/7eac88abb2e57e752f3302f02be5f3ce3d7adfb4/library/core/src/slice/index.rs:15
5: <alloc::vec::Vec<T> as core::ops::index::Index<I>>::index
at /rustc/7eac88abb2e57e752f3302f02be5f3ce3d7adfb4/library/alloc/src/vec.rs:1982
6: panic::main
at ./src/main.rs:4
7: core::ops::function::FnOnce::call_once
at /rustc/7eac88abb2e57e752f3302f02be5f3ce3d7adfb4/library/core/src/ops/function.rs:227
note: Some details are omitted, run with `RUST_BACKTRACE=full` for a verbose backtrace.
That’s a lot of output! The exact output you see might be different depending
on your operating system and Rust version. In order to get backtraces with this
information, debug symbols must be enabled. Debug symbols are enabled by
default when using cargo build
or cargo run
without the --release
flag,
as we have here.
In the output in Listing 9-2, line 6 of the backtrace points to the line in our project that’s causing the problem: line 4 of src/main.rs. If we don’t want our program to panic, we should start our investigation at the location pointed to by the first line mentioning a file we wrote. In Listing 9-1, where we deliberately wrote code that would panic, the way to fix the panic is to not request an element beyond the range of the vector indexes. When your code panics in the future, you’ll need to figure out what action the code is taking with what values to cause the panic and what the code should do instead.
We’ll come back to panic!
and when we should and should not use panic!
to
handle error conditions in the “To panic!
or Not to
panic!
” section later in this
chapter. Next, we’ll look at how to recover from an error using Result
.